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Abstract-Exact solutions of the equations of the linear theory of elasticity are given for axial-shear modes of
vibration of an isotropic, prismatic bar whose normal section is an equilateral triangle or has the equilateral
triangle as a module. Afamily of contour modes is also described for bars with a rhombic section formed of
two equilateral triangles and with sections having the rhombus as a module.

INTRODUCTION

Axial-shear and contour modes of vibration of a cylindrical or prismatic bar are those in which
the displacements are parallel and perpendicular, respectively, to the generators of the bar and
unvarying along its length. The associated frequencies are the long wave limits of certain of the
upper branches of the dispersion relation for waves along the bar. Accordingly, exact solutions of
the equations of elasticity for such modes are of interest as they supply data for adjusting or
testing various approximate equations or solutions. Thus, the high frequency range of
Timoshenko's one-dimensional equations of flexural vibrations of bars is improved by employing
the exact frequencies of the fundamental axial-shear modes to calculate shear-correction
factors [1]. A higher axial-shear mode and a contour mode play similar roles in the
Bleustein-Stanley one-dimensional equations of torsional vibrations [2]. Approximate solutions
of the three-dimensional equations, for example the finite element solutions by Talbot and
Przemieniecki[3], can also profit by comparison of the computed limiting frequencies of the
upper extensional, flexural and torsional modes with the exact results for the corresponding
axial-shear and contour modes.

Recent applications [3,4] of approximate methods to the problem of vibrations of an isotropic,
elastic prism with an equilateral triangular cross-section motivated a quest for the exact solutions
for the axial-shear modes. Those modes are governed by the same differential equation (the
two-dimensional wave equation) and boundary conditions (vanishing normal derivative) as are
the motions of water waves in a shallow basin or box [5] and the two-dimensional acoustic
vibrations of a gas in a cylindrical or prismatic chamber [6]. Both of these phenomena have been
subjects of investigation for almost one hundred and fifty years; so it seems unlikely that simple
solutions like those for the equilateral triangle should not have been discovered long ago. However,
no published solutions appear to be available.

For the special case of a prism with Poisson's ration 1/4 and a rhombic normal section formed
of two equilateral triangles, a solution is given for a family of contour modes-modes with
displacements normal to the generators of the prism and uniform along its length. Whereas the
axial-shear modes are equivoluminal, the contour modes in the rhombic prism are composed of
coupled equivoluminal and dilatational waves. The period of the lowest mode of the family was
given in a previous paper[7].

The solutions for both the triangular and rhombic sections satisfy traction-free conditions on
all planes parallel to the faces of the prisms and regularly spaced at intervals of the altitude of the
triangles. Accordingly, a great variety of vibrating prisms with traction-free faces can be formed
by juxtaposition of prisms with the triangular or rhombic section. Examples are exhibited.

EQUILATERAL TRIANGULAR SECTION

The simplicity of the solutions for axial-shear vibrations of a prism with an equilateral
triangular section stems from the fact that a straight-crested, sinusoidal, shear wave, with its
displacement parallel to the generators of the prism and its wave normal parallel or perpendicular
to a side of the triangle, reflects from the other sides in such a way that the wave returns upon
itself: in the original direction in the case of the "parallel" wave and in the opposite direction in
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the case of the "perpendicular" wave, as indicated in Fig. 1. The paths of parallel rays, in each
case, have the same length for a full circuit and a pair of waves, traveling in opposite directions,
forms a steady vibration.

Thus, in a prism with its generators parallel to the axis of z, we are led to consider waves with
displacements only axial and of the forms

w == A sin 'Y (y sin a ± x cos a ± ct ± E), (1)

where c is the velocity of shear waves, E == 0 or 'IT /2, and a is the angle the wave normal makes
with the axis of x. As the components of displacement, u and v, in the plane of the normal section
are zero and the third component is independent of z, the components of stress are

(2)

where #L is the shear modulus. Then the displacement equations of motion, in linear, isotropic
elasticity, reduce to

The boundary of the normal section is given by the equation

x (x - V3y + h)(x + V3Y+ h) == 0

(3)

(4)

i.e. an equilateral triangle with altitude h and sides 2h/V3. From (2) and (4), the conditions for
traction-free lateral surfaces of the prism are

awlax == 0 on x == 0,

awlax - V3awlay == 0 on x == V3y -h, (5)

aw/ax +V3 awlay == 0 on x==-V3y-h.

Upon expanding (1) and combining members of the resulting sum for various combinations of
the plus and minus signs and values of E and a, we find three independent forms descriptive of
waves with wave normals parallel or perpendicular to the sides of the triangle.

For the waves parallel to the sides, a == 'IT /2, ± 'IT /6 and we have

w == (A I cos 'YY +A 2 cos ~V3'Yx cos hy) eiwt
,

w == (BI sin 'YY + B 2 cos ~V3'Yx sin hy)eiw
,.

(6)

(7)

h

y

(b)

Fig. I. Illustrating reftections of axial shear waves with wave normals (a) parallel and (b) perpendicular to the
faces of a prism with an equilateral triangular normal section.
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For the waves perpendicular to the sides, a = 0, ± 7T /3 and we have only

w = (C. cos ry +Cz cos hx cos 4v'3yy) eiw
'
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(8)

as there can be no companion solution odd in y with straight-crested waves.
Substitution of (6), (7) and (8) in the differential eqn (3) and the boundary conditions (5) yields

Solution A (waves parallel to sides, displacement even in y):

w = A [cos yy +2(-lt cos 4v'3yx cos hy]eiW
',

w = yc = 2n7Tc /v'3h, n = 1,2,3...

Solution B (waves parallel to sides, displacement odd in y):

w = B[sin yy -2(-lt cos4v'3yx sinhy]eiwt
,

w = yc = 2n7Tc/v'3h, n = 1,2,3...

Solution C (waves perpendicular to sides):

w = C[cos yx +2(-lt coshx cos!v'3yy]eiW
',

w = yc =2n7Tclh, n =1,2,3...

(9)

(10)

(11)

The shapes of the first two modes of solutions A and C are illustrated in Figs. 2 and 4. In Fig.
3, for solution B, the third mode is included as it is the lowest axial-shear mode associated with
torsional vibrations of the prism; the frequency of the mode n = 3 is the exact "warping cut-off
frequency" required for the Bleustein-Stanley equations [2].

The frequencies found here do not conform with limiting frequencies of branches shown in
Fig. 13 of [3], but the authors agree that the scale of the figure should be reduced by a factor of
2·54/2 (one inch to two centimeters).

SECTIONS WITH EQUILATERAL TRIANGLE AS MODULE

In addition to satisfying the boundary conditions (5), the solutions (9)-(11) satisfy the
conditions of zero traction on planes parallel to the lateral faces of the triangular prism and
regularly spaced at intervals of the altitude, h, of the triangle, i.e.

ow/ox=O on x= ±(p -l)h, p= 1,2,3, ...

ow/ax - v'3 ow/ay= 0 on x= V3y ±(2q -l)h, q= 1,2,3, ... (12)

aw/ax +v'3 ow/ay= 0 on x= -v3y ±(2r-1)h, r= 1,2,3, ...

Examples of sections for which these conditions are satisfied, for solutions (9)-(11), are
illustrated in Figs. 5-7.

RHOMBIC SECTION

The simplest example of the axial-shear solutions described in the preceding section, beyond
the single triangle, is the case of the rhombic section given by the equation

(x + V3"y + h)(x + V3"y - h)(x - V3"y + h)(x -V3"y - h) = 0, (13)

i.e. a pair of juxtaposed equilateral triangles. The paths of the rays are illustrated in Figs. 8(a) and
(b). In addition, there is a simple family of contour modes if Poisson's ratio of the material is 1/4.
A contour mode is one in which the displacements are perpendicular to the generators of the
prism and unvarying along its length. Whereas axial-shear modes involve only equivoluminal
waves, the contour modes in the rhombic prism comprise coupled equivoluminal and dilatational
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n =1 n=2

n =1

Fig. 2. Axial displacements: Solution A, n :: 1,2.

n=3

Fig. 3. Axial displacements: Solution B, n '" 1,2,3.

n=2

waves. The only known equivoluminal contour modes are the Lame modes [8] in isotropic prisms
with square-module sections and analogous modes [9] in anisotropic prisms with rectangular­
module sections.

If Poisson's ratio is 1/4, a dilatational wave, with its normal (and displacement) parallel to the
long diagonal of the rhombic section, reflects, on incidence at a boundary, as an equivoluminal
wave with its normal parallel (and displacement perpendicular) to the short diagonal. Further, an
equivoluminal wave traveling parallel to the short diagonal reflects as a dilatational wave parallel
to the long diagonal. Parallel rays form closed rectangular paths of equal length as shown in Fig.
8(c). Pairs of such waves, traveling in opposite directions, form steady vibrations with all
displacements parallel to the long diagonal. Accordingly, the components of displacement v and
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n=l n=2

Fig. 4. Axial displacements: Solution C, n '" 1,2.
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Fig. 5. Examples of normal sections of prisms for which the traction-free boundary conditions (12) are
satisfied by the solutions (9)-(11) for axial-shear modes of vibrations.

W, parallel to y and z, are zero and the remaining component has the form

u = (D1 cos ax +D2 cos ~y )e;"'.

The components of stress are then

(14)

(15)
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Fig. 6. Examples of normal sections of prisms for which the traction-free boundary conditions (12) are
satisfied by the solutions (9)-(11) for axial-shear modes of vibrations.

Fig. 7. Examples of nonnal sections of prisms for which the traction-free boundary conditions (12) are
satisfied by the solutions (9)-(11) for axial-shear modes of vibrations.
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Fig. 8. Illustrating paths of rays in the rhombic section of a prism: in axial-shear modes comprising
equivoluminal waves with normals (a) parallel and (b) perpendicular to the faces of the prism; (c) in contour
modes comprising coupled equivoluminal and dilatational waves with normals parallel to the short and long

diagonals, respectively.

and the displacement equations of motion reduce to

(16)

Although both tensile and shear stresses contribute, the conditions for traction-free faces of
the prism are simply

v3 au/ax +au/ay :;:: 0 on x +v3y == ±h,

v3 au/ax - au/ay == 0 on x - v3y == ±h,

as the conditions for vanishing normal and tangential traction are the same on each face.
Upon substituting (14) in (16) and (17), we find

u :;:: D[cos ax +(_1)" cos ~y]e;"'t,

a :;:: ~rV3 = n7T/h, w = ~c = n7TcY3/h, n == 1,2,3, ...

(17)

(18)

The period of the fundamental mode, n = 1, in terms of the length of a side, L = 2h/Y3, is

(19)

a result which was obtained previously [7] simply as the transit time of an equivoluminal wave
across the short diagonal or a dilatational wave across the long diagonal.

As in the case of the triangular section, the solution (18), as well as the solutions (9)-(11),
produces traction-free planes parallel to the faces of the rhombic prism at intervals h. Thus, a
great variety of cross-sectional shapes is also accommodated by the solution (18), although more
limited than in the case of the axial shear modes, as there are only two, instead of three, families
of traction-free planes.
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